增材制造(实体零件制造技术)

盾反宏 6 0

增材制造(AdditiveManufacturing,AM)技术是采用材料逐渐累加的方法制造实体零件的技术,相对于传统的材料去除一切削加工技术,是一种“自下而上”的制造方法。近20年来,增材制造技术取得了快速的发展。快速原型制造、增材制造、实体自由制造等,各异的叫法分别从不同侧面表达了该制造技术的特点。1

这一技术不需要传统的刀具、夹具及多道加工工序,在一台设备上可快速而精密地制造出任意复杂形状的零件,从而实现“自由制造”,解决许多过去难以制造的复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。而且越是复杂结构的产品,其制造的速度作用越显著。

Additive Manufacturing

增材制造技术

AM

切削加工技术

技术优势

AM技术不需要传统的刀具和夹具以及多道加工工序,在一台设备上可快速精密地制造出任意复杂形状的零件,从而实现了零件“自由制造”,解决了许多复杂结构零件的成形,并大大减少了加工工序,缩短了加工周期。而且产品结构越复杂,其制造速度的作用就越显着。

发展趋势

国外发展现状

欧美发达国家纷纷制定了发展和推动增材制造技术的国家战略和规划,增材制造技术已受到政府、研究机构、企业和媒体的广泛关注。2012年3月,美国白宫宣布了振兴美国制造的新举措,将投资10亿美元帮助美国制造体系的改革。其中,白宫提出实现该项计划的三大背景技术包括了增材制造,强调了通过改善增材制造材料、装备及标准,实现创新设计的小批量、低成本数字化制造。2012年8月,美国增材制造创新研究所成立,联合了宾夕法尼亚州西部、俄亥俄州东部和弗吉尼亚州西部的14所大学、40馀家企业、11家非营利机构和专业协会。

英国政府自2011年开始持续增大对增材制造技术的研发经费。以前仅有拉夫堡大学一个增材制造研究中,诺丁汉大学,谢菲尔德大学、埃克塞特大学和曼彻斯特大学等相继建立了增材制造研究中心。英国工程与物理科学研究委员会中设有增材制造研究中心,参与机构包括拉夫堡大学、伯明翰大学、英国国家物理实验室、波音公司以及德国EOS公司等15家知名大学、研究机构及企业。

除了英美外,其他一些发达国家也积极采取措施,以推动增材制造技术的发展。德国建立了直接制造研究中心,主要研究和推动增材制造技术在航空航天领域中结构轻量化方面的应用;法国增材制造协会致力于增材制造技术标准的研究;在政府资助下,西班牙启动了一项发展增材制造的专项,研究内容包括增材制造共性技术、材料、技术交流及商业模式等四方面内容;澳大利亚政府于2012年2月宣布支持一项航空航天领域革命性的项目“微型发动机增材制造技术”。

该项目使用增材制造技术制造航空航天领域微型发动机零部件;日本政府也很重视增材制造技术的发展,通过优惠政策和大量资金鼓励产学研用紧密结合,有力促进该技术在航空航天等领域的应用。

国内发展现状

大型整体钛合金关键结构件成形制造技术被国内外公认为是对飞机工业装备研制与生产具有重要影响的核心关键制造技术之一。西北工大凝固技术国家重点实验室已经建立了系列激光熔复成形与修复装备,可满足大型机械装备的大型零件及难拆卸零件的原位修复和再制造。应用该技术实现了C919飞机大型钛合金零件激光立体成形制造。民用飞机越来越多地采用了大型整体金属结构,飞机零件主要是整体毛坯件和整体薄壁结构件,传统成形方法非常困难。

商飞决定采用先进的激光立体成形技术来解决C919飞机大型复杂薄壁钛合金结构件的制造。西北工大采用激光成形技术制造了最大尺寸达2.83m的机翼缘条零件,最大变形量<1mm,实现了大型钛合金复杂薄壁结构件的精密成形技术,相比现有技术可大大加快制造效率和精度,显着降低生产成本。

北航在金属直接制造方面开展了长期的研究工作,突破了钛合金、超高强度钢等难加工大型整体关键构件激光成形工艺、成套装备和应用关键技术,解决了大型整体金属构件激光成形过程零件变形与开裂“瓶颈难题”和内部缺陷和内部质量控制及其无损检验关键技术,飞机构件综合力学性能达到或超过钛合金模锻件,已研制生产出了我国飞机装备中迄今尺寸最大、结构最复杂的钛合金及超高强度钢等高性能关键整体构件,并在大型客机C919等多型重点型号飞机研制生产中得到应用。

西安交大以研究光固化快速成型(SL)技术为主,于1997年研制并销售了国内第一台光固化快速成型机;并分别于2000年、2007年成立了教育部快速成形制造工程研究中心和快速制造国家工程研究中心,建立了一套支撑产品快速开发的快速制造系统,研制、生产和销售多种型号的激光快速成型设备、快速模具设备及三维反求设备,产品远销印度、俄罗斯、肯尼亚等国,成为具有国际竞争力的快速成型设备制造单位。

西安交大在新技术研发方面主要开展了LED紫外快速成型机技术、陶瓷零件光固化制造技术,铸型制造技术、生物组织制造技术、金属熔复制造技术和复合材料制造技术的研究。在陶瓷零件制造的研究中,研制了一种基于硅溶胶的水基陶瓷浆料光固化快速成型工艺,实现了光子晶体、一体化铸型等复杂陶瓷零件的快速制造。

西安交大与中国空气动力研究与发展中心及成都飞机设计研究所合作开展了风洞模型制造技术的研究,围绕测压模型、测力模型、颤振模型和气弹模型等方面进行了研究工作。设计了树脂—金属复合模型的结构方案,采用有限元方法计算校核树脂—金属复合模型的强度、刚度以及固有频率。通过低速风洞试验,研究了复合模型的气动特性,并与金属模型试验数据相对比。强度校核试验显示,模型的整体性能良好,满足低速风洞的试验要求,研制的复合模型在低速风洞试验下具有良好的前景。

复合材料构件是航空制造技术未来的发展方向,西安交大研究了大型复合材料构件低能电子束原位固化纤维铺放制造设备与技术,将低能电子束固化技术与纤维自动铺放技术相结合,研究开发了一种无需热压罐的大型复合材料构件高效率绿色制造方法,可使制造过程能耗降低70%,节省原材料15%,并提高了复合材料成型制造过程的可控性、可重复性,为我国复合材料构件绿色制造提供了新的自动化制造方法与工艺。

AM已成为先进制造技术的一个重要的发展方向,其发展趋势有三:

(1)复杂零件的精密铸造技术应用;

(2)金属零件直接制造方向发展,制造大尺寸航空零部件;

(3)向组织与结构一体化制造发展。未来需要解决的关键技术包括精度控制技术、大尺寸构件高效制造技术、复合材料零件制造技术。

AM技术的发展将有力地提高航空制造的创新能力,支撑我国由制造大国向制造强国发展。

我国在电子、电气增材制造技术上取得了重要进展。称为立体电路技术(SEA,SLS+LDS)。电子电器领域增材技术是建立了现有增材技术之上的一种绿色环保型电路成型技术,有别于传统二维平面型印制线路板。传统的印制电路板是电子产业的粮食,一般采用传统的不环保的减法制造工艺,即金属导电线路是蚀刻铜箔后形成的,新一代增材制造技术采用加法工艺:用激光先在产品表面镭射后,再在药水中浸泡沉积上去。这类技术与激光分层制造的增材制造相结合的一种途径是:在SLS(激光选择性烧结)粉体中加入特殊组份,先3D打印(增材制造成型)再用微航3D立体电路激光机沿表面镭射电路图案,再化学镀成金属线路。

“立体电路制造工艺”涉及的SLS+LDS技术是我国本土企业发明的制造工艺。是增材制造在电子、电器产品领域分支应用技术。也涉及到激光材料、激光机、后处理化学药水等核心要素。目前立体电路技术已经成为高端智能手机天线主要制造技术,产业界已经崛起了立体电路产业板块。

声明:本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即【留言反馈】通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意

发表评论 取消回复
表情 图片 链接 代码

分享